8,046 research outputs found

    Survival of fossils under extreme shocks induced by hypervelocity impacts

    Get PDF
    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34?km?s?1, corresponding to mean peak pressures of 0.2–19?GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon

    Learning physics in context: a study of student learning about electricity and magnetism

    Full text link
    This paper re-centres the discussion of student learning in physics to focus on context. In order to do so, a theoretically-motivated understanding of context is developed. Given a well-defined notion of context, data from a novel university class in electricity and magnetism are analyzed to demonstrate the central and inextricable role of context in student learning. This work sits within a broader effort to create and analyze environments which support student learning in the sciencesComment: 36 pages, 4 Figure

    On the Importance of Engaging Students in Crafting Definitions

    Get PDF
    In this paper we describe an activity for engaging students in crafting definitions. We explore the strengths of this particular activity as well as the broader implications of engaging students in crafting definitions more generally

    Microstrip superconducting quantum interference device amplifiers with submicron Josephson junctions: enhanced gain at gigahertz frequencies

    Full text link
    We present measurements of an amplifier based on a dc superconducting quantum interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The small junction size reduces their self-capacitance and allows for the use of relatively large resistive shunts while maintaining nonhysteretic operation. This leads to an enhancement of the SQUID transfer function compared to SQUIDs with micron-scale junctions. The device layout is modified from that of a conventional SQUID to allow for coupling signals into the amplifier with a substantial mutual inductance for a relatively short microstrip coil. Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at: http://physics.syr.edu/~bplourde/bltp-publications.ht

    Understanding and Affecting Student Reasoning About Sound Waves

    Get PDF
    Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources, i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for publication in the International Journal of Science Educatio

    Seismic velocity structure of seaward-dipping reflectors on the South American continental margin

    Get PDF
    Seaward dipping reflectors (SDRs) are a key feature within the continent to ocean transition zone of volcanic passive margins. Here we conduct an automated pre-stack depth-migration imaging analysis of commercial seismic data from the volcanic margins of South America. The method used an isotropic, ray-based approach of iterative velocity model building based on the travel time inversion of residual pre-stack depth migration move-out. We find two distinct seismic velocity patterns within the SDRs. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, those SDRs that lie within faulted half grabens also have high velocity zones at their down-dip ends. The velocity anomalies are generally concordant with the reflectivity and so we attribute them to the presence of dolerite sills that were injected into the lava pile. The sills therefore result from late-stage melt delivery along the large landward-dipping faults that bound them. In contrast the more outboard SDRs show no velocity anomalies, are more uniform spatially and have unfaulted basal contacts. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early extension and faulting of the upper brittle crust transitioning into more organised, dike-fed eruptions similar to seafloor spreading
    • 

    corecore